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Orderings of one-dimensional Ising systems with an arbitrary 
interaction of finite range 
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Department of Applied Science, Faculty of Engineering, Tohoku University, Sendai 980, 
Japan 

Received 16 July 1973 

Abstract. The concept of the irreducible block is introduced for the one-dimensional king 
system with an arbitrary interaction of finite range. It is proved that the ground state energy 
of the system occurs for a regular chain of one of the irreducible blocks or for coexistence 
of the regular chains of the irreducible blocks. The theorems given in the text involve 
statements as to when one has a regular ordering and when irregular orderings appear. 
Some of our conclusions are (i) that the ground state energy of the linear Ising magnet with 
pair interactions up to third neighbours is effected by the seven spin orderings recently 
given for the case of spin f by Katsura and Narita, and (ii) that the ground state energy of 
the Ising magnet of spin larger than f is effected by the same set of orderings as for the cor- 
responding Ising magnet of spin f .  

1. Introduction 

It is well known that the Ising magnet of spin + orders either ferromagnetically or anti- 
ferromagnetically if the nearest neighbour interaction is assumed. If the interaction is up 
to second neighbours and a uniform external field is applied, four orderings occur 
(Oguchi 1965). Morita and Horiguchi (1972) gave an elementary method for proving 
this fact. 

In general we believe that a system takes a simple regular structure in the ground 
state, and tries to get the ground state as the state which has the lowest energy of the 
various simple regular orderings. Such an attempt has been presented by a number of 
people for various systems with an interaction of a range longer than the nearest neigh- 
bours; eg, Luttinger and Tisza (1946), Meijer and Niemeijer (1973) for classical spins 
coupled by the dipolar force; see Nagamiya (1967) for classical spins coupled by the 
Heisenberg interaction ; Horiguchi and Morita (1972), Katsura and Narita (1973a) for 
the square and sc Ising magnet of spin i. In another recent paper, Katsura and Narita 
(1973b) investigated the one-dimensional Ising magnet of spin 3 when the interaction is 
up to the third neighbours ; they assumed that the system orders with a repeating unit 
composed of six or less spins and obtained seven orderings. 

Luttinger and Tisza (1946) conjectured that the ground state has the translational 
symmetry by the vectors which are equal to twice the lattice constants, for the classical 
spins interacting via the dipolar force. Recently, Karl (1973) gave a proof justifying this 
conjecture for the systems in which the interaction is the nearest neighbour one and some 
symmetry properties are satisfied. 
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In the present paper, we shall focus our attention on one-dimensional Ising systems 
with an arbitrary interaction of finite range. We extend the above-mentioned argument 
of Morita and Horiguchi (1972) and present a number of theorems in which it is stated 
that the ground state of this system is effected by a regular chain of a repeating unit of 
finite length or by coexistence of such regular chains. The theorems involve statements 
as to  when one has a regular ordering and when irregular orderings appear. By applying 
the theorems, we prove that the Ising magnet of spin f with an interaction up to  third 
neighbours orders in the seven ways which were given by Katsura and Narita (1973b). 

The discussions in the present paper are mostly for the one-dimensional Ising 
systems with an interaction of finite range. Section 6 is an exception where we consider 
the Ising magnet of spin larger than i, in an arbitary lattice and with an interaction of an 
arbitrary range. Under the assumption that the energy of the system is linear in each 
spin, we prove that the ground state energy of the Ising magnet of spin S,  which is larger 
than f, can be effected by an ordering in which no lattice sites take the configuration 
other than spin - Sand S. As a consequence, we conclude that this system takes the same 
sets of orderings as for the corresponding Ising magnet of spin f. In fact, for the linear 
Ising magnet of spin 1 with an interaction up to second neighbours, Katsura and Narita 
(1973b) obtained the same four orderings as for the case of spin f. 

2. Energy of a chain in an arbitrary arrangement 

We consider a general one-dimensional lattice system in which each lattice site takes on a 
finite number sy of configurations. We assume an interaction of finite range r .  If the 
total number oflattice sites is L,  the total energy ofthe system in an arbitrary arrangement 
is expressed as follows : 

L - r  

E = 1 #(*+ ')(si 3 si+ 1 9 . . * > Si + r) + # L ( ~ L  - r  + 1 3 S L  - r  + 2 5 . 3 S L )  (1) 

where si denotes the configuration on the ith lattice site, and @+') takes the following 
form : 

i =  1 

#(r + Y S i ,  S i +  1 ,  . . ' , Si+ , )  

= U'"(Si)+ 1 UjZli(Si ,  S j ) +  11 Uy_)i ,k-j(Si ,  s j ,  S k )  
i < j $ i + r - 1  i < j < k Q i + r -  1 

r + l )  + . . . + ~ \ , ~ , . , , , 1 ( s i ~  s i +  1 ,  * * . 7 S i + ? ) .  

4L is an arbitrary correction to  the total energy due to  the last r lattice sites. 

figurations of the r sites starting from i and from i+ 1 are isomorphic, that is, if 
We shall pay attention to a block of sites, eg, of 1 sites from i to i + 1 - 1. If the con- 

s. I + J  . = s  i + l + j ,  0 < j < r-1, (2) 
then we call the block of the 1 sites from i to i + 1 - 1 a displaceable block. If a chain of 
sites involves a displaceable block, we call the chain reducible. If the chain is not reducible, 
we call it irreducible. As to the existence of displaceable blocks, we note the following 
lemma. 

Lemma I .  A chain of sL + r lattice sites always involves a displaceable block composed of 
SL or less sites and is reducible. 
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This fact is seen as follows: the total number of all the possible configurations for a 
segment of r sites is sh, and hence if we consider sh+ 1 segments of r sites starting from 
lst, 2nd, . . . , and (sh + 1)th site in the chain ofsh + r sites, then at least two of the segments 
must take the same configuration ; that means an existence of a displaceable block com- 
posed of sh or less sites in the chain. 

From a block of 1 sites, we construct a regular chain of the block in which every 
segment of 1 sites starting from site ml+ 1 ( m  = 0,1,2, . . .) takes the same configuration as 
the block under consideration. 

We shall consider deleting a displaceable block from a chain. After deleting the 
block, we shall regard the site just following the block as the next site to the site just 
preceding the block (if it exists) in the remaining chain. We can confirm the following 
lemma. 

Lemma 2. If E' denotes the energy of the chain obtained after deleting a displaceable 
block D from a chain, then the energy of the original chain E is expressed as follows : 

E = €,+E' 

where cD is the energy per block in the infinite regular chain of the block D. 

We shall associate the energy d(*+ l)(si, si+ . . , si+*) to the ith lattice site. If the total 
number of sites 1 involved in the deleted displaceable block D is equal to or more than r ,  
we see that lemma 2 is trivial. If 1 is less than r ,  we use (2) for j = 1 + j' and show that 

s. t + j  ., = s.  I + l + j '  = s i + 2 1 + j s ,  0 Q j' Q r-1-1, 

In general, we find that 

where [ r / l ]  is the integral part of r/l. This shows that the arrangement in the segment of r 
sites following the deleted displaceable block D in the chain is the same as in the cor- 
responding segment in the regular chain of the block D. With this consideration, we 
conclude lemma 2 holds also for the case of 1 < r. 

The following lemma is trivial. 

Lemma 3. If N:  is the total number of lattice sites taking the configuration s in the chain 
which is obtained from a chain by deleting a displaceable block D, then the total number 
of sites taking the configuration s in the original chain is expressed as follows : 

N ,  = vDS + N :  

where v,, is the total number of sites taking the configuration s in the block D. 

If the regular chain of a block A involves a displaceable block B of a smaller number of 
sites than A, we call the original block A reducible. If the block is not reducible, we call 
it irreducible. From this definition and lemma 1, the following lemma follows. 

Lemma 4.  An irreducible block is an irreducible chain and the total number of the 
lattice sites involved in it is less than or equal to sh. 
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We note the following lemma. 

Lemma 5 .  Every displaceable reducible block in a chain involves a displaceable irre- 
ducible block of the same chain. 

In order to show this lemma, we consider a displaceable reducible block A constituted of 
I ,  sites i, i + 1, . . . , and i+ I ,  - 1. By assumption, we have a displaceable block B of sites 
i+ j ,  i + j +  1,. . . , i+ j + l B -  1 in the regular chain of the block A, where I ,  > j 2 0 and 
1, < I,. In that case, we note that I’e lattice sites i + j + l B - l A ,  i + j + l B - l A + l , .  . . , and 
i + j - 1  also constitute a displaceable block B‘ in the same regular chain, where 
tB = 1, - 1,. According as j + 1, < I ,  or j +  1, > I,, the block B or B’ is a displaceable 
block involved in the block A of the original chain. With this consideration, we conclude 
the existence of a displaceable irreducible block in the block A, if we recall the facts that 
a block is either reducible or irreducible and a block of one site is always irreducible. 

We consider an arbitrary chain. Starting from the chain, we delete displaceable 
irreducible blocks. By virtue of lemma 5,  we see that after this process, we finally reach 
an irreducible chain, which cannot be longer than sh + r  - 1 by lemma 1. With the aid 
of the lemmas 2 and 3, we now obtain the following basic theorem. 

Theorem 1.  The total energy of a chain can always be expressed as follows 

B 

where the summation on the right hand side is taken over all the irreducible blocks B. 
zB is the energy per block in the infinite regular chain of the block B and E“ the energy for 
an irreducible chain C,. nB are zero or positive integers. If vBS denotes the number of 
lattice sites taking configuration s in the block B, then the total number of the lattice 
sites taking the configuration s in the chain is expressed as follows : 

B 

where NI is the number of sites taking the configuration s in the chain C,. 

Taking the summation over s of (5 ) ,  the total number of lattice sites L in the chain is 
expressed as 

L = C nBvB+N” ( 6 )  
B 

where vB and N“ are the total numbers of sites involved in the block B and in the chain 
C,, respectively. 

3. Ground state of a very long chain 

There are two types of problems in determining the ground state of a system. Case I 
when only the total number of the lattice sites L in the chain is given. Case I1 when not 
only the L but also the total numbers of lattice sites N s  in each configuration s in the chain 
are given. 

We first consider case I. According to theorem 1 of the preceding sectibn, the 
energy of a chain of L lattice sites cannot become smaller than the minimum value of the 
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expression (4) obtained under the restriction (6). We assume that L is very large. Let 
( c ~ / v , ) ~ ~ , ,  be the smallest value of the energy per lattice site EB/vB of all the irreducible 
blocks. If the minimum value ( c~ /v , ) , , ,~ , ,  occurs for only one B, then n B V B  is put equal to 
L - N ”  for that block B and to zero for all the other blocks. If (~B/vg),,,i,, occurs for two or 
more B, then the lowest energy of (4) is effected by putting the sum of n B V B  for these B 
equal to L -  N ”  and n B V B  for all the other B to zero. In fact, we conclude the following 
theorems. 

Theorem 2.  If the minimum value of EB/vB occurs for only one of all the irreducible 
blocks, the ground state of a very long chain corresponds to the regular chain of that 
one irreducible block B. 

Theorem3. Ifthe minimum value of cB/vB occurs for a (a 2 2) ofthe irreducible blocks and 
if no pair of all the a regular chains of each of those a blocks has no isomorphic segment 
composed of r sites, then the ground state corresponds to an arbitrary coexistence of the 
a regular chains, where r is the range of the interaction. If there occurs an isomorphic 
segment composed of r sites in a pair of the a regular chains, then an irregular chain may 
appear within a part of the chain in the ground state. 

This conclusion is reached by observing that, if an isomorphic segment composed of 
r sites occurs in a pair of the regular chains of B, and B, we can make a mixed chain 
composed of irreducible blocks B, and B,, without changing the energy per site of the 
chain. 

In case 11, the minimum of (4) is taken under the restriction of (5). When N,/L are 
given, sy equations ( 5 )  can be satisfied if we assume that all nB excluding sy of them are 
zero. For every set of sM B, we assume that all n, except for those B are zero and calculate 
the sy values of n, .  If all these sy values of n ,  are determined to be non-negative, we 
calculate E/L  by (4). We shall denote the minimum of the thus-calculated values of E/L 
by (E/L)mi,,.  If a (a < sy) of n,  are found positive among the set of sy ng giving the value 
(E/L)min in the above calculation, we shall denote the set of the a B for which n,  are found 
positive, by (B, , B,, . . . , BJmi,,. We can then confirm that E/L  given by (4) cannot take a 
smaller value than (E/L)mi,, and conclude the following theorem. 

Theorem 4 .  In the case when the total numbers of lattice sites N ,  in each of sy configura- 
tions are prescribed, if all the sets of (B , , B,, . . . , BJmi,, corresponding to the given set of 
N ,  are given and if no pair of the regular chains of each of B, , B, , . . . , and B, have no 
isomorphic segment composed of r sites, then the ground state is given by the state of 
coexistence of a regular chains of the irreducible blocks B, , B,, . . . , and B,, respectively. 
If there exists only one set (B, , B,, . . . , BJmi,,, then the length of each regular chain is 
uniquely determined. If a pair of the regular chains of each of B, , B, , . . . , and B, has an 
isomorphic segment composed of r sites, an irregular chain may appear within a part of 
the chain. 

Theorems 2-4 state that the orderings in the ground state of the one-dimensional Ising 
systems can be determined from knowledge about the irreducible blocks. 

All the irreducible blocks [ s 1 s 2 . .  . SJ are given below for the cases of sy = 2 and 
1 < r < 3. If r = 1, the set is [l], [2], [12]. If r = 2, we further have [121], [122], [1221]. 
If r = 3, we further have [1211], [12211], [1222], [12221], [122211], [121221], [1212211], 
[1212221]. [12122211]. If r = 4, we have further 91 irreducible blocks. 
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When sy = 3, we have all the blocks given for the case of sY = 2 and [3] and all 
those which are obtained from the ones involving both 1 and 2 by replacing 1 and 2 
either by 2 and 3, respectively, or by 1 and 3, respectively. If r = 1, we have [l], [2], [3], 
[12], [13], [23], and [123]. If r = 2, we have further 80 irreducible blocks. The longest 
irreducible blocks are found to  have SL lattice sites for all the cases when the listing of 
them is performed; for sy = 2 , l  < r < 3 and sy = 3 , l  < r < 2. 

In the procedure of producing all the irreducible blocks by a computer, we first obtain 
all the irreducible chains and then delete those which are not irreducible blocks from 
them. The procedure is devised to retain only one from all the equivalent blocks which 
are achieved from others by a rotation and/or a reflection. 

4. Ground state of the Ising magnet 

We now consider the Ising magnet of spin S and with the pair interaction of a finite 
range r .  The energy of this system is given by 

where si takes on the values -S, - S + 1, . . . , and S. We assume that h is positive without 
loss of generality. 

In determining the ground state of the Ising magnet, the total numbers of lattice 
sites occupied by each value of spin from - S to S are not given. The only restriction is (6), 
and theorems 2 and 3 of the preceding section apply. The ground state ordering is 
determined by the irreducible blocks B for which the energy per lattice site fg/vB is 
minimum among all the irreducible blocks. If the minimum of occurs for only 
one B, the ground state corresponds to the regular chain of that block B. 

We notice that, if we change the signs of all the spins involved in an irreducible 
block, we obtain again an irreducible block. Considering this fact, we note that the block 
with more negative spins than positive ones cannot be the block with minimum f g / ~ g ,  if 
h > 0, and we shall exclude those. From the list for the case of sM = 2 in the preceding 
section, we then have the following set of the irreducible blocks for the case of S = i: 
(+),(+ - ) i f r  = 1 and further(+ - +),(+ - - + ) i f r  = 2. For r = 1 and 2, we know 
that the regular chains of these two and four irreducible blocks become the ground state 
in some regions on the J , / h  line and in the ( J , / h ,  J , /h )  plane, respectively (Oguchi 1965, 
Morita and Horiguchi 1972). 

If r = 3 ,  we have further (+ - + +), (+ - - + +), (+ - - - + +), (+ - + - - +), 
(+ - + - - + +), (+ - + - - - + +). We find that there exists no set of J , ,  J 2  and 
J ,  when the last three take the minimum value of fg/vB; eg an inconsistency results if 
f&g is assumed to  be smaller (i) for (+ - + - - +) than for each of (+ -), (+ - +)  
and (+ - - +), (ii) for (+ - + - - + +)  than for each of (+ -), (+ - - +) and 
(+ - + +),and(iii)for (+ - + - - - + +) than  foreachof(+ - ) a n d ( +  - - - + +). 
When the external field h is positive and the interaction is up to third neighbours, the 
present calculation thus proves that all the possible orderings of the king magnet of 
spin 3 are the seven, excluding the last three among the ten listed above. In fact, Katsura 
and Narita (1973b) compared the energies of the regular orderings of blocks composed 
of six or  less lattice sites, and gave the regions where all those seven orderings become the 
ground state in the ( J , / h ,  J 2 / h ,  J 3 / J 1 )  space. 
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On the boundaries between two, three and four regions in the J J h  line, ( J l / h ,  J , /h )  
plane, and ( J l / h , J 2 / h , J 3 / h )  space, which are for the cases Y = 1, 2, 3, respectively, 
the minimum value of cB/vB is taken by two, three and four B, respectively. Theorem 3 
applies for those cases. Then we conclude the occurrence or coexistent states of the regu- 
lar chains. Sometimes irregular chains are also expected. 

5. Ground state of binary mixtures 

In this section, we consider binary mixtures on a lattice. Each lattice site is occupied by 
one particle. We assume a pair interaction of range r between particles. When the total 
numbers of particles N s  of each species s (s = 1 or s = 2) are given, the total energy of an 
arbitrary arrangement of the system can be expressed in the following form (eg see ter 
Haar 1954): 

2 

E,,, = E'"+ N,ES1)+ E 
s =  1 

where 

Here si takes the values + 1 or - 1 according as the site i is occupied by a particle of 
species s = 1 or s = 2. E('), E:'), J j - i  are constants determined by the interaction. 

N -  are given and theorem 4 of 0 3 applies. 
As seen in 0 3, the total number of the possible orderings is equal to the total number of 
all the different irreducible blocks, and that number is three and six if the range of 
interaction Y is one and two, respectively. 

The graph of E / L  against N - / L  is given for the case r = 2 in figure 1. In the graph, 
we plot the points (vB- /vB ,  EB/vB) for all B, and then draw straight lines connecting all the 
pairs of these points. When the line, connecting the points for the irreducible blocks 
B ,  and B,, gives the lowest value of E / L  for the given value of N - /L ,  the point on the 
line gives the lowest value of E / L  for that N - / L .  The ground state for an arbitrary 
energy is effected by the coexistence of the two regular chains of each of the B 1  and B, . 
Figure 1 gives this graph for various values of J ,  and J ,  as indicated in figure 2. Figure 2 
shows the change of the orderings as a function of N - / L  for an arbitrary J J J ,  . If J ,  
and J ,  are given, we see the radial direction in figure 2 corresponding to the ratio J , / J l .  
If the given value of N - / L  drops between two of the arcs and/or circles, the system takes 
the coexistent state of the two orderings corresponding to  those two arcs and/or circles. 
If J ,  > 0, there exists no isomorphic segment composed of two sites in the regular chains 
of + and -, respectively, or in the regular chains of + - and either of + or - , and hence 
the ground state is a coexistent state of those two regular chains, for an arbitrary value of 
N - / L .  For the other values of J ,  < 0, there exists an isomorphic segment composed of 
two sites in those two chains if N - / L  is between two arcs and/or circles, ai:d hence an 
irregular chain may occur in the chain in the ground state. If N - / L  is on one of the arcs 
and circles, one has the regular chain of the block corresponding to that arc or circle. 
When J ,  or J ,  is zero, there will occur further complex chains. We note that the part of 
N - / L  < in the present figure 2 corresponds to figure 1 in our preceding note (Morita 
and Horiguchi 1972). 

In this problem, N I  = N ,  and N ,  
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-I + - -+  
1 I I I J 
0 3 t +  I 

N- l L  
Figure 1. E/L against N J L  for the binary mixtures of species + and - with the pair 
interaction up to second neighbours. The black circles on the line of N -/L = 0, i, t ,  $, 
and 1 give c$ve for the irreducible blocks B = +, + - +, + - - +, + - - , and -, respec- 
tively. The crosses on N -/L = t are for B = + -. 

For the case of an interaction up to third neighbours, Katsura and Narita (1973b) 
gave the figures corresponding to figure 1 of our preceding note. One can easily construct 
the figures corresponding to the present figure 2 for that case from their figures. Figure 
3 gives an example. 

6. Ising magnet of spin larger than 

In the present section, we consider the Ising magnet of spin larger than $. We shall not 
restrict ourselves to the linear chain nor to the interaction of finite range in the main 
discussion in this section. The following proposition is easily proved. 

Theorem 5. If the energy of the system is linear in each of the spins, then the ground state 
energy of the Ising magnet of spin S which is larger than 4, is effected by an ordering 
which consists only of spin Sand - S .  In particular, for the case of the linear Ising magnet, 
the ground state is effected by the regular chain of one of the irreducible blocks which 
consist only of spin S and - S .  
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Figure 2. Phase diagram showing the orderings of the binary mixtures of species + and - 
with the pair interaction up to  second neighbours, as  a function of N J L ,  J ,  and J , .  (+(e) 
on the periphery show the ratios of J ,  and J ,  for which the energy E / L  is given as a function 
of N J L  in figure 1. 

Figure 3. Phase diagram showing the orderings of the binary mixtures of species + and - 
with the pair interaction up to third neighbours. This figure is for J J J ,  = -0.4. The phase 
diagram takes the same form topologically in the range - 1 < J J J ,  < 0. 

Let us assume that the spin si at the ith site is not equal to - S nor to S in an ordering Co. 
We shall consider the orderings C, and C- which are obtained from the original one CO 
by replacing the spin si on the ith site by spin S and - S,  respectively. We note that the 
energy of the ordering CO cannot be smaller than both of C, and C -  . This fact implies 
that the ground state energy of the Ising magnet of spin larger than +can be effected by the 
spin orderings composed only of spin + Sand - S. The problem of obtaining the ground 
state orderings of spin + S and - S is thus reduced to the problem of the Ising magnet of 
spin +. 

The only possible situation when a spin not equal to - S  nor to S may appear in the 
ground state is the case when the energy does not change if we change the spin at a site 
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from + S to - S or vice uersa in an ordering with the ground state energy. In that case we 
may replace the spin at that site by an arbitrary spin without changing the energy. For the 
one-dimensional case with an interaction of finite range, such may happen at the bound- 
aries of the regions in the (Jl/h, J, /h,  . . . , J J h )  space. For instance, if we assume 
J ,  = - h/2 and J ,  > 0 for the linear Ising magnet of spin 1 with an interaction up to 
second neighbours, an irregular chain involving spin 0 may occur in the ground state. 

It is now trivial to say that the same two, four and seven orderings for the linear 
Ising magnet of an arbitrary spin occur as for the Ising magnet of spin f, if the interaction 
is up to first, second and third neighbours, respectively. 

7. Ternary mixtures 

For one-dimensional ternary mixtures, theorem 4 applies. The following description 
gives a process of obtaining the set (B, , B,, . . . , We draw a graph of E/L on the 
(N,/L, N,/L, N3/L) plane. At the point (VB1/VB,VB2/VB,VB3/VB), we take the height 
EB/vB; see figure 4. For each set of three B, we draw the triangular plane which has 
the vertices at the points (vB~/vB, VB,/vB, V&B, cB/vB) for those B. For a given set of 
values of Nl/L, N,/L and N3/L, the minimum of (E/L)min of the values of E/L on those 
triangular planes gives the ground state energy. If the vertices of the triangular plane 
giving the lowest value correspond to the irreducible blocks B, , B,, and B,, the state is 
represented by the coexistence of the three regular chains of these blocks B, , B, , and 
B3. 

131 

i - N,IL 
Figure 4. Graph of E/L on the ( N , / L ,  N J L ,  N,/L) plane for a ternary mixture with the 
nearest neighbour interaction. The values of z$vB at ( v e l / v B ,  vB2/vB. vB3/vB) are shown by 
black circles for B = [l]. [12], [13]. [23], and [123], respectively. 

As an illustration, we consider a ternary mixture with a nearest neighbour interaction. 
The total energy E,,, of the chain in an arbitrary arrangement is given by 

3 

E,,, = Eo+ 1 N,u"'(s)+E 
s = l  
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where 
L- 1 

E = d2)(si, si+ 1 ) .  
i =  1 

299 

(10) 

We shall assume that 

P ( 1 ,  1) = u‘2’(3,3) = 1, 

u‘Z’(1, 3) = u 9 3 ,  1) = - 1, 

u‘2’(2, s) = U @ ) ( &  2) = 0, s = 1,2,3 

The graph of E / L  on the plane of ( N J L ,  N21L, N J L )  is given in figure 4. This figure 
shows that the ground state of this system is given by the coexistence of the regular 
chains (i) of [l], [12], and [13] if N , / L  > i, (ii) of [3], [13], and [23] if N, /L  > i, (iii) of 
[2], [12], and [13] if: > N l / L  > N,/L ,  and (iv) of [2], [13], and [23] if; > N J L  > N J L .  

We shall consider the case when all u‘’)(s, s‘) in (10) for s, s’ = 1,2, 3 have the opposite 
signs. Figure 4 should then be made upside down. The triangular plane giving the 
lowest energy is the one which has vertices at the positions of the blocks [l], [2] and [3] 
for all values of ( N , / L ,  N,/L,  N , /L) ,  and hence the ground state is always represented by 
the coexistence of the regular chains of the blocks [l], [2], and [3], respectively. 

8. Summary and comments 

The concept of irreducible blocks is introduced. I t  is proved that the ground state energy 
of a one-dimensional Ising magnet is effected by a regular chain of the irreducible block. 
For the case of one-dimensional lattice gas mixtures, the ground state is effected by a 
coexistent state of the regular chains of the irreducible blocks. The theorems presented in 
$ 3 involve the criterion on the irreducible blocks, as to when we have a regular chain, 
when we have a coexistent state of a number of regular chains, and when an irregular 
chain occurs in the ground state. 

Those theorems are applied to the Ising magnet of spin i and of an arbitrary spin in 
$9 4 and 6,  respectively, and to the binary and ternary mixtures in $5 5 and 7, respectively. 

Before closing this paper, we give some comments on the square and sc Ising magnets. 
The proof of Luttinger and Tisza’s conjecture due to Karl (1973) applies to the square 
lattice with an interaction up to  second neighbours and to the sc lattice with an interac- 
tion up to third neighbours. Thus we confirm that the spin orderings given for the Ising 
magnet of spin i by Horiguchi and Morita (1972) and by Katsura and Narita (1973a) 
are all the orderings occurring in these systems. If we recall theorem 5 given in $ 6, we 
notice that those orderings are also all for the lsing magnet of spin larger than 4. 
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